Bidirectional Dependency Parser for Indian Languages

نویسندگان

  • Aswarth Abhilash
  • Prashanth Mannem
چکیده

In this paper, we apply bidirectional dependency parsing algorithm for parsing Indian languages such as Hindi, Bangla and Telugu as part of NLP Tools Contest, ICON 2010. The parser builds the dependency tree incrementally with the two operations namely proj and non-proj. The complete dependency tree given by the unlabeled parser is used by SVM (Support Vector Machines) classifier for labeling. The system achieved Labeled Attachment Score (LAS) of 84.79%, 69.09%, 68.95% for Hindi, Bangla and Telugu. While using fine-grained dependency labels, it achieved LAS of 83.12%, 65.97%, 67.45% respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Engineering in Persian Dependency Parser

Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...

متن کامل

Simple Parser for Indian Languages in a Dependency Framework

This paper is an attempt to show that an intermediary level of analysis is an effective way for carrying out various NLP tasks for linguistically similar languages. We describe a process for developing a simple parser for doing such tasks. This parser uses a grammar driven approach to annotate dependency relations (both inter and intra chunk) at an intermediary level. Ease in identifying a part...

متن کامل

Dependency Parsing of Indian Languages with DeSR

DeSR is a statistical transition-based dependency parser which learns from annotated corpora which actions to perform for building parse trees while scanning a sentence. We describe the experiments performed for the ICON 2010 Tools Contest on Indian Dependency Parsing. DesR was configured to exploit specific features from the Indian treebanks. The submitted run used a stacked combination of fou...

متن کامل

Explorer UParse : the Edinburgh system for the CoNLL 2017 UD shared task

This paper presents our submissions for the CoNLL 2017 UD Shared Task. Our parser, called UParse, is based on a neural network graph-based dependency parser. The parser uses features from a bidirectional LSTM to produce a distribution over possible heads for each word in the sentence. To allow transfer learning for lowresource treebanks and surprise languages, we train several multilingual mode...

متن کامل

A System for Multilingual Dependency Parsing based on Bidirectional LSTM Feature Representations

In this paper, we present our multilingual dependency parser developed for the CoNLL 2017 UD Shared Task dealing with “Multilingual Parsing from Raw Text to Universal Dependencies”1. Our parser extends the monolingual BIST-parser as a multi-source multilingual trainable parser. Thanks to multilingual word embeddings and one hot encodings for languages, our system can use both monolingual and mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010